TRTS-Series

Applications:	Key features:
Radar Calibration & Testing	Delays: 0.1-300 µsec (fixed)
Signal & Phase Noise Processing	Frequency Range: L, S, C, X and Ku radar bands (0.1-20GHz) ODL versions
Extension of radar range site	Delay accuracy: 1%
Clutter Canceler	Remote Control: RS-232 or Ethernet
BIT (built-in test)	High Dynamic Range
EW Systems - Jammers	Variety of configurations
Path Delay Simulation	Up to 15 usec can be housed in Mini enclosure

Options:				
ODL with 2, 4, up to 8 switchable delays				
Delay accuracy of 0.1 % (not less then 25 nsec)				
RF Bypass				
Dispersion Compensator for long delay line				
Various Gain				
Control RS-232 or TTL or Ethernet				
Full BIT using signal detection at the receiver				

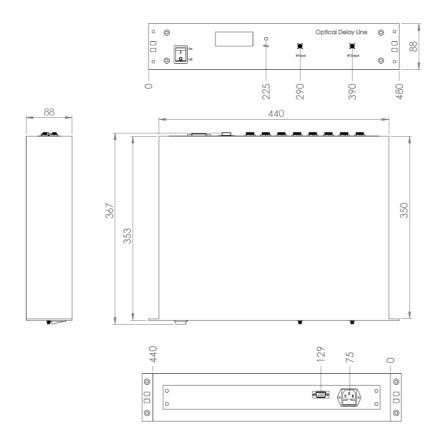
Optical delay line ODL series provides a high performance solution for testing and calibration of radar systems, or for RF communication. The ODL converts analog RF signals in the 0.1-20 GHz range to optical signals and back. The RF input signal is converted into an optical modulated signal, which is then transmitted into a single mode fiber, creating a fixed time delay defined by the fiber length. After passing the fiber, the optical signal is converted back into an electrical RF signal, which is identical to the input RF signal. Any fixed time delay between 0.1 and 300 µsec can be provided to customers.

The ODL is operated as a standalone unit with no need for any intervention by the operator - it can be also controlled externally from a PC through various communication interfaces.

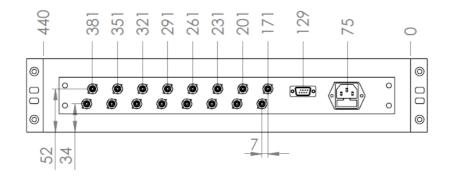
ODL unit is a compact solution, which provides superb performance including accurate time delay and with ultra silent operation. The ODL can be purchased with an integral switch unit supporting up to 8 predefined time delay values in a single ODL unit.

	Deutschland	Telemeter Electronic GmbH	Tel. +49 906 70693-0	Fax +49 906 70693-50	info@telemeter.de	www.telemeter.info
ĺ	Schweiz	Telemeter Electronic GmbH	Tel. +41 71 6992020	Fax +41 71 6992024	info@telemeter.ch	www.telemeter.info
İ	Tschechische Republik	Telemeter Electronic s.r.o.	Tel. +420 38 5310637	Fax +420 38 5510124	info@telemeter.cz	www.telemeter.info

TRTS-Series


Table below describes the typical specifications ODL .								
Parameter	Unit	Specifications	Note					
RF			<u>' </u>					
Frequency range [1]	GHz	L,C,S,X,Ku						
Delay time [2,3,4,5]	µsec	0.1-300	pre-fixed delay defined by customer					
Delay accuracy [6]	%	1	Minimum accuracy of 25 ns					
Delay repeatability	%	<0.01	at +/- 5 °C variations					
System RF gain [7,8]	dB	-30	Without the Delay Line loss					
Noise Figure [7]	dB	40	Without the Delay Line loss					
Group Delay Variation	psec	± 100						
1dB input Compression point	dBm	> 15						
Max input RF power	dBm	+23						
Spurious	dBc	<-100						
Phase noise (at 10kHz offset)	dBc	<-100						
RF Flatness [10]	dB	± 2.0 2.5 3.0	for 0.1 - 8 15 18 GHz Bands					
VSWR	-	2:1						
Impedance	Ohm	50						
Mechanical								
1550 nm laser CW optical power	mW	≤ 20						
Communication [11]	-	RS-232						
RF connectors	-	SMA	N type is available					
Main AC supply	VAC	220/110	DC version is available					
19" Rack mounting [12]	mm3	440 x 450 x 133	See mechanical drawing					
Operating Temperature	°C	-20 ÷ +60						
Storage	°C	(-40) ÷ +85						

- (1) L, S, C, X, Ku versions are optional.
- (2) Any fixed delay between 0.1 to 300 µsec is optional.
- (3) Integrated switching unit allowing choosing between 2 to 8 predefined delay values.
- (4) RF bypass is optional.
- (5) Dispersion compensator unit for long delay / high frequency is optional.
- (6) 0.1% accuracy is optional for long delay line.
- (7) Not including delay line loss which is about 1dB per 10 μ sec delay.
- (8) Pre-Amp may be added to improve the noise figure by about 15dB. Post-Amp may be added to improve the system ODL system gain.
- (9) Excluding in-band harmonics.
- (10) 20GHz ODL is optional.
- (11) TTL or Ethernet are optional.
- (12) Variety of ODL enclosures are optional.
- (13) Full BIT is optional (using signal detection at the receiver).



Mechanical Layout: 2U/3U Layout

Note: 3U is similar with 133 mm height.

Comment: An option for up to 8 ports rear panel for external delay line.

