

CAPTURE EVERY DETAIL

Highest **High Signal to High Sample Noise Input** Rate 12-bit Amplifiers ADC's 4096 **Resolution** Low Noise System Architecture 12 bits all the time. 15.6 Bigger Display **Bigger display** Smaller footprint Most bench space VN Tools MSO /AUI abNotebook More Capability DneTouch

Spectrum '

ass/Fail Protocol Analysis

History Mode

Power Analysis Conversion Stu

Providing **12 bits all the time**, a **bigger display**, **smaller footprint**, and **more capability**, the **HDO6000B captures every detail**.

12 bits all the time.

3

HD4096 TECHNOLOGY - 16X CLOSER TO PERFECT

High Signal to
Noise Input
AmplifiersHigh Sample
Rate 12-bit
ADC'sLow Noise
System
Architecture

Teledyne LeCroy high definition 12-bit oscilloscopes use unique HD4096 technology to provide superior and uncompromised measurement performance:

- 12-bit ADCs with high sample rates
- High signal-to-noise amplifiers
- Low noise system architecture (to 1 GHz)

Oscilloscopes with HD4096 technology have higher resolution than conventional 8-bit oscilloscopes (4096 vs. 256 vertical levels) and low noise for uncompromised measurement performance. The 12-bit ADCs support capture of fast signals at oscilloscope bandwidth ratings up to 1 GHz, while Enhanced Sample Rate to 10 GS/s ensures the highest measurement accuracy and precision. The high performance input amplifiers deliver pristine signal fidelity, and the low-noise system architecture provides an ideal signal path to ensure that signal details are delivered accurately to the oscilloscope display – 16x closer to perfect.

16x Closer to Perfect

16x more resolution

HD4096 technology provides 12 bits of vertical resolution — 16x more resolution than conventional 8-bit oscilloscopes. The 4096 discrete vertical levels reduce the quantization error compared to 256 vertical levels. This improves the accuracy and precision of the signal capture and increases measurement confidence.

EXPERIENCE THE DIFFERENCE

Experience HD4096 accuracy, detail and precision and never use an 8-bit oscilloscope again. Whether the application is general purpose design and debug, high precision analog sensors, power electronics, automotive electronics, mechatronics or other specialized applications, the HD4096 technology provides unsurpassed confidence and measurement capabilities.

Clean, crisp waveforms

When compared to waveforms acquired and displayed using conventional 8-bit oscilloscopes, waveforms captured with HD4096 12-bit technology are dramatically crisper and cleaner, and are displayed more accurately. Once you see a waveform acquired with HD4096 technology, you will not want to go back to using a conventional 8-bit oscilloscope.

More signal details

16x more resolution provides more signal detail. This is especially helpful for analyzing wide dynamic range signals where very small amplitude signal details must be viewed. 12-bit acquisitions combined with the oscilloscope's vertical and horizontal zoom capabilities provide unparalleled insight into system behaviors and problems.

Unmatched measurement precision

HD4096 technology delivers measurement precision several times better than conventional 8-bit oscilloscopes. Higher oscilloscope measurement precision results in better ability to assess corner cases and design margins, perform root cause analysis, and create the best possible solution for any discovered design issue.

Clean, crisp waveforms | Thin traces show the actual waveform with minimal noise interference.

B More signal details | Waveform details can now be clearly seen on an HD4096 12-bit oscilloscope.

Unmatched measurement precision | Measurements are more precise and not affected by quantization noise.

BIGGER DISPLAY, SMALLER FOOTPRINT, MORE BENCH SPACE

6.7"

Capture every detail with the HDO6000B's bigger 15.6" display.

Bigger display

With a 15.6" display and 1920x1080 resolution, the HDO6000B allows you to capture more detail. Connect to a second monitor, and view the extended desktop in glorious 4K resolution.

Smallest footprint

At only 6.7" deep and 25% thinner than competitive products, the HDO6000B is the sleekest instrument in the market.

Most bench space

The HDO6000B occupies less bench space than the competitive products, allowing you to spread out test circuits and probes to help focus on solving problems.

MORE CAPABILITY, INCREASED PRODUCTIVITY

MAUI Studio

Unleash the power of a Teledyne LeCroy oscilloscope anywhere, using a PC with MAUI Studio. Work from anywhere while having the full functionality of an oscilloscope at your fingertips. Collaborate with ease by giving everyone access to the same software options to use for offline analysis.

Spectrum Analysis

Spectrum-Pro-2R provides the most flexible spectral analysis with a logarithmic scale and drag-and-drop spectrum traces. Leverage long acquisition memory to perform analysis down to 1 Hz with resolution bandwidth up to 100 mHz.

		LEC	ROY		QualiPHY
NO	ST 5	i0 eP	HY Test Repo	rt	
)ver	all r	esult:	Pass		
10			MOST Waveforms		
ne of a	-	-	0104003141003		
ange a	-		0.0		
landard	R-ubit		MOETSE WHY		
Ruinin: Time of kei Configuration in use Linde is use Osolitecope Senar # Configurace Senar # Configurace Timeare version			2013/51.64 14 12:34 Compliance Tests (Jern MOSTStePhy LORVISION-BOOK Mos LORVISION-BOOK LORVISION-BOOK	41 M: 5040121	
uelPer	core ve	naire version raion	8.6.8.0 (build 194607) 6.7.8.0 (build 191039)		
Sum		y Tabl	65.53 (Sue 1940) 67.53 (Sue 1940) 1050 1256		
Sum	man	y Tabl	6.5.2 (bud theid) 6.720 (bud theid) 1020 1226	Carrien Salar	E Ins. Crimina
Sum		y Tabl		Current Nave	100.0100.0
	mary con ve seript ve mary con 1 1	y Tabl	66.6 2 (Build Wesley) 67.6 2 (Build Wesley) 10.6 0 12.6 0 12.6 0 12.6 0 12.6 0 12.6 0 12.6 0 12.6 0 12.6 0 12.6 0	Curren Vaue 0 His 214 ps	100 Cheru 4+0 Hits 4 -0 HitS (4
	man 1 1 1 1	y Tabl	Elista diule relatory Elista diule relatory Elista diule relatory Elista Processorement Elista Standard	Converse Nature D No. 21.4 pc 48.20000 Million's	100 Crisma x+018a x+0160.pp mlonatoral Ony
	mary respective	restor rise v iee 11 12 21 21	6.8.5 But State 6.75 But State 1.655 1.226	Силтет чаше 0 На 214 рк 40 2000 Мальть 40 1 ррп	100 Grame x+010s x+010s biomational Only biomational Only
		y Tabl imon in in	6.1.2 put (HAD) 6.2.2 put (HAD) 1050 1256	Currem value 0 Hits 214 ps 48 12000 Million 68 12000 Million 69 Hits	100 Creme x+010s x+010s Monatoni Ony bitmation Ony x+010s
<pre></pre>		v Tabl	6.8.5 auto (1940) 6.8.5 auto (1940) 1050 1256 9 9 9 9 9 9 9 9 9 9 9 9 9	Current Native D Hits 21.4 ps 48.12000 Shits/s 45.5 pps D Hits 2.7.5 ps	1000 Creame 4 + 2 Fills 4 - 0 HB2 pp 3 bitmational Only 5 bitmational Only 4 + 2 Fills 4 - 0 HB2 4 - 0 HB2 5 - 0
< < < > < < > < < < < < < < < < < < < <		v Tabl	Elit 2 pue (Hilling) Elit 2 pue (Hill	5.077839 10046 21.6.ps 48.10000 580049 40.1000 580049 0.16.ps 27.5.ps 0.1%	1900 CHEVE 4 × 2 HB 40 HE 2 pt Monatore Only Monatore Only 4 × 2 HB 2 + 100 pt 4 × 2 HB

QualiPHY Compliance Testing

The QualiPHY framework provides an automated and easy-to-use compliance testing platform for a number of serial data standards. QualiPHY reduces time and effort by guiding you through each setup and fully document all results.

POWER CONVERSION

HDO6000B 12-bit oscilloscopes deliver 4 analog channels, 3-phase power analysis software, and high performance probes for inverter subsection, power system and control testing.

Flexible Power Calculations

Analyze short or long acquisitions. The mean value Numerics table summarizes static performance, while per-cycle Waveforms help you understand dynamic behaviors. Use Zoom+Gate to isolate and correlate power system behaviors to control system activity during time periods as short as a single device switching cycle.

Comprehensive probing

HVD series high voltage differential probes have 65 dB CMRR at 1 MHz with upto 0.35% gain accuracy, the widest voltage ranges, and up to 6 kV commonmode rating. Connect current probes or use your own transducers with the programmable CA10 current sensor adapter to create a customized "probe". HVFO and DL-HCM probes are ideal for gate drive probing.

Two-wattmeter Support

Both 1-phase and 3-phase measurements are supported. The two-wattmeter measurement method allows 3-phase power measurements to be made using two voltage and two current signals; therefore, 3-phase measurements can be made using 4 channels instead of 6.

Want 8 or 16 channels? The WaveRunner 8000HD has you covered. Learn more at www.teledynelecroy.com/wr8000hd

AUTOMOTIVE ELECTRONICS

Η	D
40	96

HDO6000B 12-bit oscilloscopes provide a wide range of probing solutions, compliance testing, and debug software to best address the specific test needs of the automotive industry.

Ideal probe for 48 V systems

The DL-HCM, 60 V Common Mode Differential Probes are the ideal probes for 48 V battery-powered motor and drive systems. When combined with HDO6000B 12-bit oscilloscopes, the DL10-HCM provides 1 GHz bandwidth with the highest accuracy, the best CMRR, and lowest noise.

Superior IVN tools

Unique capabilities that build on our legacy serial data trigger and decode provide the most complete in-vehicle networking (IVN) debug and validation. Cover all aspects of physical layer 10Base-T1S and 100Base-T1 Automotive Ethernet compliance testing and debug.

EMI/EMC pre-compliance test

12-bit resolution for spectral analysis provides more insight. Specialized EMC/EMI pulse parameters provide measurement flexibility. Support for all relevant electrical and magnetic field units of measure. Capability to measure sub-1 Hz magnetic field strengths.

POWER INTEGRITY

Η	D
40	96

HDO6000B 12-bit oscilloscopes' high resolution and long memory let you validate and debug all aspects of power supply, delivery and consumption – for complete confidence.

Accurate PDN measurements

Make sensitive measurements like rail collapse characterization with total confidence thanks to HDO6000B's high dynamic range and 0.5% gain accuracy. Its HD4096 architecture means an exceptionally low noise floor, for easily pinpointing noise sources.

Specialized power probes

Combine HDO6000B with the RP4030 Power Rail Probe for unsurpassed insight into PDN behavior. The variety of probe tips ensures easy connectivity, and its low loading characteristics minimize disruption to the device under test.

Spectrum Analysis

Narrow in on interference causing problems in PDNs by enabling unique debug features such as spectral background removal on Spectrum-Pro-2R to eliminate spurious interference from environmental or other sources.

BEST EMBEDDED SYSTEM DEBUG

HDO6000B 12-bit oscilloscopes acquire long records at the highest resolution for the most comprehensive deeply embedded computing system analysis (analog, digital, serial data, and sensor).

Clock Analysis

Enable better analysis of clock sources by combining HDO6000B's all-instance measurements, to measure every clock edge, with the ability to capture long records and build statistics faster. Then, trend values over time or build a statistical distribution.

Protocol Analysis

HDO6000B uses powerful conditional DATA triggering to trigger on protocol elements or specific DATA patterns. Highly adaptable ERROR frame triggering helps isolate protocol errors while Search & Zoom helps correlate protocol events to embedded signals.

Power Management Tools

HD06000B supports decoding of I²C, SPMI, SMBus, and PMBus protocols to provide insight into dedicated power manangement serial protocols and speeding up test and debug of designs.

HD06000B OSCILLOSCOPES AT A GLANCE

Key Attributes

- 1. 15.6" 1920 x 1080 capacitive touchscreen display
- 2. 4 analog input channels
- 3. ProBus input supports every Teledyne LeCroy probe
- **4.** MAUI with OneTouch user interface for intuitive and efficient operation
- 5. Q-Scape multi-tab display architecture
- 6. Up to 250 Mpts of acquisition memory
- **7.** HD4096 technology 12 bits all the time
- 8. Buttons/indicators color-coded to associated waveform on display

- 9. Use cursors and adjust settings without opening a menu
- **10.** Mixed Signal capability with 16 integrated digital channels
- **11.** 6 USB 3.1 ports (2 front, 4 side)
- **12.** HDMI and DisplayPort supports 4K (4096 x 2304) external monitor
- 13. Removable SSD (standard)
- 14. Reference Clock Input/Output for connecting to other equipment
- **15.** USBTMC over USB 2.0 for data offload
- **16.** WaveSource Arbitrary Function Generator

POWERFUL, DEEP TOOLBOX

Сар	oture		View		Mea	sure	М	ath				Ana	lyze				Document
Triggering	Acquire	Display Grids	Display Views	Zooming	Parameters	Parameter Analysis	Functions	Advanced Functions	Pass/Fail	Anomaly Detection	Serial Decode	Serial Message Analysis	Clock & Timing Jitter	Serial Data Jitter	Serial Data Analysis	Application Packages	Document
Exclusion					Element K	ey:	Category	▲ Invented by Le ★ Unique to LeCr	Croy oy				c	7		0	Hardcopy
Measurement	5 MS/s Roll					Number — 84	se + Crosstalk	MAUI Icon				Color Overlays	Measure Gate	Eye Diagrams	XX XX XX XX Multi-Lane	EMC Pulse	Email on Action
A B C D Multistage	Sequence Mode						Name					13	14 A ★ Jitter Overlay	15 ▲ Tj Tj, Rj, Dj	16 ★ PAM-4 Analysis	17-22	Compliance
24 CII	25 • • • • • • • • • • • • • • • • • • •	26	27 ▲★	28	29 A +	30	31 ▲★ Full Memory FFT	32	33 Mask Test	34	r 35 A	Search & Zoom	37	38 A	39 ▲★ Rj + BUj Views	40-45 DDR Analysis	46 WaveStudio
47 ★ 01101010 ↓ ↓ Serial Data	48	49	r 50 A	51	52 ▲★ + × ÷ Parameter Math	53 T > T ₀ Parameter Acceptance	54	55 ▲★ C+C+ C+C+ Processing Web	56 STOP GO Actions	57 A *	r 58 ADDR=0x21 DATA=0x3A Protocol Layer	59 #/S Bus Parameters	60	61 A *	62 A * Dj Views	63-67	68 A*
69	70 • • • • • • • • • • • • • • • • • • •	71 Q-Scape	3D Persistence	73	74 ▲★ C++ Custom Measure	75 ▲★ Histicon/ Histogram	76	π ▲★ C++ Custom Math	78 ▲★ P Q K Boolean Compare	79 III History Mode	80 RPM=1368 Application Layer	. 81 A *	82 ▲ Jitter Spectrum	83 ▲★ Sim Jitter Simulation	84 ▲★ wise + Crosstalk	85-89	90 A ★
91	92	93	94	95	96	97	98	99	100	101	102	· 103 ▲★ ↓↓↓↓↓ ✓ Serial DAC Waveform	104	105	106 VectorLinQ VSA	107-114 QualiPHY	115 ★
		17 V I P Device Loss	Mod Control Loop	19	20 ▲★ 3-Phase	21 At C. MR. Bas Static+Dynamic 44 At	22 A + Zoom+Gate	63 ★ 85	64 ★	65 A	r 66	67	107		109 ↓ ↓ ↓ Video	110 mipi MIPI 114	
		B W W B/W Separation	Multi-Eye View	DDR Tj, Rj, Dj	Debug Toolkit	√-√ Virtual Probe							Automotive		2 USB	Storage	

Our heritage

Teledyne LeCroy's 50+ year heritage is in processing long records to extract meaningful insight. We invented the digital oscilloscope and many of the additional waveshape analysis tools.

Our obsession

Our tools and operating philosophy are standardized across much of our product line. This deep toolbox inspires insight; and your moment of insight is our reward.

Our invitation

Our Periodic Table of Oscilloscope Tools explains the toolsets that Teledyne LeCroy has deployed in our oscilloscopes. Visit our interactive website to learn more about them. teledynelecroy.com/tools

PROBES

Teledyne LeCroy offers an extensive range of probes to meet virtually every probing need.

60 V Common Mode Differential Probes	The 60 V Common Mode Differential Probes are the ideal probes for lower voltage GaN power conversion measurement with the
DL05-HCM, DL10-HCM	highest accuracy, best CMRR, and lowest noise.
ZS Series High Impedance Active Probes ZS1000, ZS1500	High input impedance (1 M Ω), low 0.9 pF input capacitance and an extensive set of probe tips and ground accessories make these low-cost, single-ended probes ideal for a wide range of applications. The ZS Series is available up to 4 GHz bandwidth.
Differential Probes (200 MHz – 1.5 GHz) ZD200, ZD500, ZD1000, ZD1500 AP033	High bandwidth, excellent common-mode rejection ratio (CMRR) and low noise make these active differential probes ideal for applications such as automotive electronics and data communications. AP033 provides 10x gain for high-sensitivity measurement of series/shunt resistor voltages.
Active Voltage/Power Rail Probe RP4030	Specifically designed to probe a low impedance power/voltage rail. The RP4030 has 30 V built-in offset adjust, low attenuation (noise), and high DC input impedance with 4 GHz of bandwidth. Featuring a wide assortment of tips and leads, including solder- in and U.FL receptacle connections.
High Voltage Fiber Optically isolated Probe HVF0108	The HVFO108 is a compact, simple, affordable probe for measurement of small signals (gate drives, sensors, etc.) floating on an HV bus in power electronics designs, or for EMC, EFT, ESD and RF immunity testing sensor monitoring. Suitable for up to 35 kV common-mode. 140 dB CMRR.
HVD Series High Voltage Differential Probes HVD3102A, HVD3106A (1 kV) HVD3206A, HVD3220 (2 kV) HVD3605A (6 kV)	Available with 1, 2 or 6 kV common-mode ratings. Excellent CMRR (65 dB @ 1 MHz) at high frequencies is combined with low inherent noise, wide differential voltage range, high offset voltage capabilities, and up to 0.35% gain accuracy. The ideal probe for power conversion system test.
High Voltage Passive Probes HVP120, PPE4KV, PPE5KV, PPE6KV	The HVP and PPE series includes four fixed-attenuation probes covering a range from 1 kV to 6 kV. These probes are ideal for lightning/surge or EFT testing, or for probing in-circuit beyond the range of an LV-rated passive probe.
Current Probes CP030, CP030-3M, CP030A CP031, CP031A CP150, CP150-6M CP500, DCS025	Available in bandwidths up to 100 MHz with peak currents of 700 A and sensitivities to 1 mA/div. Extra-long cables (3 or 6 meters) available on some models. Ideal for component or power conversion system input/output measurements. DCS015 deskew calibration source also available.
Probe and Current Sensor Adapters TPA10, CA10	TPA10 adapts supported Tektronix TekProbe-compatible probes to the Teledyne LeCroy ProBus interface. CA10 is a programmable adapter for third-party current sensors that have voltage or current outputs proportional to measured current.

	HDO6034B	HD06054B, HD06054B-MS	HD06104B, HD06014B-MS
Vertical - Analog Channels			
Analog Bandwidth @ 50 Ω (-3 dB)	350 MHz	500 MHz	1 GHz
Analog Bandwidth @ 1 MΩ (-3 dB)	350 MHz	500 MHz	500 MHz
<u>Rise Time (10–90%, 50 Ω)</u>	1 ns	700 ps	450 ps
<u>Rise Time (20–80%, 50 Ω)</u>	700 ps	500 ps	300 ps
Input Channels	4		
Vertical Resolution	12 bits; up to 15 bits with enhanced re	solution (ERES)	
Effective Number of Bits (ENOB)	8.7 bits	8.6 bits	8.4 bits
Vertical Noise Floor (rms, 50 Ω)			
1 mV/div	85 μV	100 µV	145 µV
2 mV/div	85 μV	100 µV	145 µV
5 mV/div	90 µV	105 µV	150 μV
10 mV/div	95 µV	110 μV	155 μV
20 mV/div	<u>110 μV</u>	130 μV	<u>185 μV</u>
50 mV/div	210 µV	<u>265 μV</u>	275 μV
100 mV/div	360 µV	450 μV	500 μV
200 mV/div	<u>1.10 mV</u>	1.25 mV	1.75 mV
500 mV/div	2.10 mV	2.60 mV	2.75 mV
1 V/div	3.70 mV	4.50 mV	4.90 mV
Sensitivity	50 Ω : 1 mV-1 V/div, fully variable; 1 M	Ω : T mV-T0 V/div, fully variable	
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±(0.5%) FS, offset at 0 V		
Channel-Channel Isolation	60 dB up to 200 MHz 50 dB up to 350 MHz	60 dB up to 200 MHz 50 dB up to 500 MHz	60 dB up to 200 MHz 50 dB up to 500 MHz 40 dB up to 1 GHz
	1 m 10 10 m 10 m 102 r	mV to 19.8 mV: ±1.0 V, 5 mV to 9.9 mV: ± mV to 19.8 mV: ±8 V, 20 mV to 1 V: ±10 1 MΩ: NV to 4.95 mV: ±1.6 V, 5 mV to 9.9 mV: ± NV to 19.8 mV: ±8 V, 20 mV to 100 mV: ± mV to 198 mV: ±80 V, 200 mV to 1 V: ±1 1 02 V to 10 V: ±400 V	4 V V 4 V 16 V 60 V
DC Vertical Offset Accuracy	+(1.0% of offset setting + 0.5% ES + 0.0% C	12% of max offset + 1mV	
Maximum Input Voltage	50 0: 5 Vrms + 10 V Peak		
	1 MQ: 400 V max. (DC + Peak AC \leq 10	kHz)	
Input Coupling	50 Ω: DC. GND: 1 MΩ: AC. DC. GND	,	
Input Impedance	50 0 ± 2.0%;1 M0 ± 2.0% 15 pF		
Bandwidth Limiters	20 MHz 200 MHz		
Rescaling	Length: meters, inches, feet, yards, mile Angle: radian, arcdegr, arcmin, arcsec, o Acceleration: m/s2, in/s2, ft/s2, g0; Vol Force (Weight): Newton, grain, ounce, p torr, psi; Electrical: Volts, Amps, Watts, Volt/meter, Coulomb/m2, Farad/meter, Henry/meter; Energy: Joule, BTU, calor revolution/minute, N·m, Ib-ft, Ib-in, oz-ir	es; Mass: grams, slugs; Temperature: Ce cycles, revolutions, turns; Velocity: m/s, lume: liters, cubic meters, cubic inches, v bound; Pressure: Pascal, bar, atmospher Volt-Amperes, Volt-Amperes reactive, Fa , Siemen/meter, power factor; Magnetic ie; Rotating Machine: radian/second, fre n, Watt, horsepower; Other: %	elsius, Fahrenheit, Kelvin; in/s, ft/s, yd/s, miles/s; cubic feet, cubic yards; e (technical), atmosphere (standard), arad, Coulomb, Ohm, Siemen, : Weber, Tesla, Henry, Amp/meter, equency, revolution/second,
Horizontal - Analog Channels			
Timebases	Internal timebase common to 4 input of	channels	
Time/Division Range	20 ps/div - 5 ks/div with standard men RIS available at ≤ 10 ns/div; Roll Mode	nory (up to 10 ks/div with -L memory, 2 available at ≥ 100 ms/div and ≤ 5 MS/s	5 ks/div with -XL memory); S
Clock Accuracy	±2.5 ppm + 1.0ppm/year from calibrat	ion	
Sample Clock Jitter	Up to 10 ms acquired time range: 280	fsrms (internal timebase reference)	
Delta Time Measurement Accuracy	$\sqrt{2} * \sqrt{\left(\frac{Noise}{SlewRate}\right)^2} + (Sample Clock Jite)$	ter)² (RMS) + (clock accuracy * reading) (second	ds)
Jitter Measurement Floor	$\sqrt{\left(rac{Noise}{SlewRate} ight)^2}$ + (Sample Clock Jitt	ter)² (RMS, seconds, TIE)	
Jitter Between Channels	Analog Channels: 2 psrms (TIE, typical Digital Channels: 350 ps (maximum) b Analog-Digital Channels: <5ns (maxim	l) etween any two channels um) between any analog and any digita	l channel
Channel-Channel Deskew Range	±9 x time/div. setting, 100 ms max., ea	ach channel	
External Timebase Reference (Input)	10 MHz ±25 ppm at 0 to 10 dBm into §	50 Ohms	
External Timebase Reference (Output)	10 MHz, 2.0 dBm ±1.5 dBm, sinewave	synchronized to reference being used (internal or external reference)

4(J96

	HDO6034B	HDO6054B, HDO6054B-MS	HD06104B, HD06014B-MS
Acquisition - Analog Channels			
Sample Rate (Single-Shot)	10 GS/s on all 4 Channels with Enhand	ced Sample Rate	
Sample Rate (Repetitive)	125 GS/s, user selectable for repetitive	e signals (20 ps/div to 10 ns/div)	
Memory Length		Standard:	
(Number of Segments in Sequence	50 N	Mpts/ch for all channels (30,000 segme	ents)
Acquisition Mode)	100	Option - L:	
	100	Mpts/ch for all channels (60,000 segme	ents)
	250	Mots/ch for all channels (65 000 segme	ents)
Intersegment Time	1.25 us		
Averaging	Summed averaging to 1 million sween	os: continuous averaging to 1 million sw	leens
Interpolation	Linear or Sin x/x (2 nt and 4 nt).	so, continuodo averaging to i miniori on	
interpolation	5 or 10 GS/s Enhanced Sample Rate of	defaults to 2 pt or 4 pt Sin x/x respective	elv
Vertical, Horizontal, Acquisition -	Digital Channels (-MS Models onl	y)	
Maximum Input Frequency	250 MHz		
Minimum Detectable Pulse Width	1 ns		
Input Dynamic Range	±20 V		
Input Impedance (Flying Leads)	100 kΩ 5 pF		
Input Channels	16 Digital Channels		
Maximum Input Voltage	±30V Peak		
Minimum Input Voltage Swing	400 mV		
Threshold Groupings	Pod 2: D15 to D8, Pod 1: D7 to D0		
Threshold Selections	TTL, ECL, CMOS (2.5 V, 3.3 V, 5 V), PEC	CL, LVDS or User Defined	
I hreshold Accuracy	$\pm (3\% \text{ of threshold setting} + 100 \text{ mV})$		
User Defined Threshold Range	±10 V in 20 mV steps		
User Defined Hysteresis Range	100 mV to 1.4 V in 100 mV steps		
Sample Rate	1.25 GS/s		
Record Length	Optional -L: 100 MS Optional -XL: 125 MS		
Channel-to-Channel Skew	350 ps		
Triggering System			
Modes	Normal, Auto, Single, and Stop		
Sources	Any input channel, Ext, Ext/10, or Line;	slope and level unique to each source (except Line)
Coupling	DC, AC, HFRej, LFRej		
Pre-trigger Delay	0-100% of memory size		
Post-trigger Delay	0-10,000 Divisions in real time mode, I	limited at slower time/div settings or in	roll mode
Hold-off	From 2 ns up to 20 s or from 1 to 99,9	99,999 events	
Irigger and Interpolator Jitter	≤ 4.0 ps rms (typical) <0.1 ps rms (typical, software assisted)	≤ 3.5 ps rms (typical) <0.1 ps rms (typical, software assisted)	≤ 3.5 ps rms (typical) <0.1 ps rms (typical, software assisted)
Internal Trigger Level Range	±4.1 div from center (typical)		
External Trigger Level Range	Ext (±400 mV); Ext/10 (±4 V)		
Maximum Trigger Rate	800,000 waveforms/sec (in Sequence	e Mode, up to 4 channels)	
Trigger Sensitivity with Edge Trigger	0.9 division @ < 10 MHz	0.9 division @ < 10 MHz	0.9 division @ < 10 MHz
(Ch 1-4)	1.0 divisions @ < 200 MHz	1.0 divisions @ < 200 MHz	1.0 divisions @ < 200 MHz
	2.0 divisions @ < 350 MHz	1.5 divisions @ < 250 MHz	1.5 divisions @ < 500 MHz
Eutomal Trigger Constitution	0.0 division (2) 10 MUT	2.0 divisions (ω < 500 MHz	2.0 divisions (ω < 1 GHz
Externar myger sensitivity, Edge Trigger	0.9 division ($@ < 10$ MHz 1.0 divisions ($@ < 200$ MHz	1.0 divisions $@ < 200 \text{ MHz}$	1.0 divisions @ < 200 MHz
	$2.0 \text{ divisions} \otimes < 200 \text{ MHz}$	1.5 divisions @ < 250 MHz	$1.5 \text{ divisions} \oplus < 500 \text{ MHz}$
		2.0 divisions $@ < 500 \text{ MHz}$	2.0 divisions @ < 300 km/z
Max. Trigger Frequency,	350 MHz	500 MHz	1 GHz
SMART Trigger			

	D
40	96

	HD06034B	HDO6054B, HDO6054B-MS	HDO6104B, HDO6104B-MS
Trigger Types			
Edge Width	Triggers when signal meets slope (po Triggers on positive or negative glitch Minimum width: 1.5 ns. maximum wid	sitive, negative, or either) and level co es with selectable widths. Ith: 20 s	ndition.
Glitch	Triggers on positive or negative glitch Minimum width: 1.5 ns. maximum wid	es with selectable widths. Jth: 20 s	
Window	Triggers when signal exits a window of	lefined by adjustable thresholds.	
Pattern	Logic combination (AND, NAND, OR, N be high, low, or don't care. The high an pattern.	OR) of 5 inputs (4 channels and extern d low level can be selected independe	nal trigger input). Each source can ntly. Triggers at start or end of
Runt	Trigger on positive or negative runts def	ined by two voltage limits and two time	limits. Select between 1 ns and 20 ns.
Slew Rate	Trigger on edge rates. Select limits for	r dV, dt, and slope. Select edge limits b	between 1 ns and 20 ns.
Interval	Triggers on intervals selectable betwee	then a least and 20 s.	20 2
Measurement	Select from a large number of measure	rement parameters to trigger on a me	20 S.
	limits.	ernent parameters to trigger on a me	
Multi-stage: Qualified	Triggers on any input source only if a sources is selectable by time or event	defined state or edge occurred on and s (Note: event B pattern trigger canno	other input source. Delay between t include analog channels).
Multi-stage: Qualified First	In Sequence acquisition mode, trigger satisfied in the first segment of the ac event B pattern trigger cannot include	s repeatably on event B only if a defin quisition. Holdoff between sources is analog channels).	ed pattern, state or edge (event A) is selectable by time or events (Note:
Multi-Stage: Cascade (Sequence) Trigger, Capability	Arm on "A" event, then Trigger on "B" e event	event. Or Arm on "A" event, then Qualify	y on "B" event, and Trigger on "C"
Multi-Stage: Cascade (Sequence)	Cascade A then B: Edge, Window, Pat	tern (Logic) Width, Glitch, Interval, Dro	pout, or Measurement.
Trigger, Types	Measurement can be on Stage B only Width, Glitch, Interval, Dropout, or Mea C: Edge, Window, Pattern (Logic)	. Cascade A then B then C (Measurem asurement. Measurement can be on S	nent): Edge, Window, Pattern (Logic), Stage C only. Cascade A then B then
Multi-Stage: Cascade (Sequence) Trigger, Holdoff	Holdoff between A and B or B and C is as the last stage in a Cascade preclud	s selectable by time or number of even les a holdoff setting between the prio	nts. Measurement trigger selection r stage and the last stage.
Low Speed Serial Protocol Triggeri	ng (Optional)		
Low Speed Senar Holdcor Higgen	Please refer to the Oscilloscope Featurinstruments	ires, Options, and Accessories Catalog	g for the latest offerings on all our
Measurement Tools			
Measurement Functionality	Display up to 8 measurement parame standard deviation, and total number. statistics table. Histicons provide a fa Parameter math allows addition, subt gates define the location for measure values based on range setting or way	ters together with statistics including Each occurrence of each parameter i ast, dynamic view of parameters and raction, multiplication, or division of tr ment on the source waveform. Param eform state.	mean, minimum, maximum, s measured and added to the waveshape characteristics. wo different parameters. Parameter heter accept criteria define allowable
Measurement Parameters - Horizontal and Jitter	Cycles (number of), Delay (from trigge level), Fall Time (90-10, @levels), Freq Jitter (peakpeak), Number of Points, F @levels), Setup (@levels), Skew (@lev Time (@level), Width (50%, @level), Δ	r, 50%), Δ Delay (50%), Duty Cycle (50 uency (50%, @level), Half Period (@level) Period (50%, @level), Δ Period (@level) els), Slew Rate (@levels), Time Interv Width (@level), X(value)@max, X(valu	1%, @level), Edges (number of, @ vel), Hold Time (@level), N Cycle I, Phase (@level), Rise Time (10-90, al Error (@level), Time (@level), Δ e)@min
Measurement Parameters - Vertical Measurement Parameters - Pulse	Amplitude, Base, Level@X, Maximum, Area, Base, Fall Time (90-10, 80-20, @ Top. Width (50%)	Mean, Median, Minimum, Peak-to-Pe levels), Overshoot (positive, negative)	ak, RMS, Std. Deviation, Top , Rise Time (10-90, 80-20, @levels),
Measurement Parameters - Statistical (on Histograms)	Full Width (@HalfMax, @%), Amplitud Mode, Range, RMS, Std. Deviation, To	e, Base, Peak@MaxPopulation, Maxin p, X(value)@Peak, Peaks (number of),	num, Mean, Median, Minimum, Percentile, Population (@bin, total)
Math Tools			
Math Functionality	Display up to 8 math functions traces	(F1-F8). The easy-to-use graphical in	terface simplifies setup of up to two
Math Operators - Basic Math	Average (summed), Average (continue Reciprocal, Rescale (with units), Roof.	bus), Difference (–), Envelope, Floor, Ir Sum (+)	nvert (negate), Product (x), Ratio (/),
Math Operators - Digital	Digital AND, Digital DFlipFlop, Digital N	JAND, Digital NOR, Digital NOT, Digital	OR, Digital XOR
(incl. with -MS Models)			-
Math Operators - Filters Math Operators - Frequency Analysis	Enhanced Resolution (ERes) to 15 bit: FFT (power spectrum, magnitude, pha memory length, Select from Bectang	s vertical, Interpolate (cubic, quadratic ase, power density, real, imaginary, ma ylar, VonHann, Hamming, ElatTop, and	c, sinx/x) agnitude squared) up to full analysis Blackman Harris windows
Math Operators - Functions	Absolute value, Correlation (two wave Integral, Invert (negate), Log (base e), Zoom (identity)	forms), Derivative, Deskew (resample Log (base 10), Reciprocal, Rescale (w), Exp (base e), Exp (base 10), ith units), Square, Square Root,
Math Operators - Other	Segment, Sparse		
Measurement and Math Integration	1		
measurement and mater integration	 Histogram of statistical distributions measurements. Track (measurement histogram and persistence trace (measurement) 	of up to 2 billion measurements. Tren : vs. time, time-correlated to acquisitio an, range, sigma).	d (datalog) of up to 1 million ons) of any parameter. Persistence

	HDO6034B	HDO6054B,	HD06104B,
Pass/Fail Testing		HDO6054B-MS	HD06104B-MS
<u> </u>	Display up to 8 Pass/Fail queries usi value <, ≤, =, >, ≥, within limit ±∆ value All Out, Any In, or Any Out conditions "All False", "Any True", "Any False", or (sound) Alarm, (send) Pulse, (save) L	ng a Single or Dual Parameter Compar e or %) or Mask Test (pre-defined or us)). Combine queries into a boolean expr groups of "All" or "Any", with following T abNotebook or other User(-defined) Ac	ison (compare All values, or Any er-defined mask, waveform All In, ression to Pass or Fail IF "All True", THEN Save (waveforms), Stop (test), ction.
Display System			
Size	Color 15.6" widescreen capacitive to	uch screen	
Resolution	Full HD (1920 x 1080 pixels)		
Number of Traces	Display a maximum of 16 traces. Sin	nultaneously display channel, zoom, m	nemory and math traces.
Grid Styles	Auto, Single, Dual, Iriplex, Quad, Octa Dual+X-Y. Supports Normal Display N each with individually selectable grid mode.	al, I andem, Iriad, Quattro, I welve, Sixt Mode (1 grid style, selectable) or Q-Sca I styles). Q-Scape tabbed displays may	een, Twenty, X-Y, Single+X-Y, ape Display Mode (4 different tabs, be viewed in Single, Dual, or Mosaic
Waveform Representation	Sample dots joined, or sample dots o	only	
Processor/CPU			
Туре	Intel® Core i5-6500 Quad Core, 3.2 G	GHz (or better)	
Processor Memory	16 GB standard		
Operating System	Microsoft Windows® 10		
Real Time Clock	Date and time displayed with waveforr	n in hardcopy files. SNTP support to synd	chronize to precision internal clocks.
Connectivity			
Ethernet Port	2 x 10/100/1000BaseT Ethernet inte	erface (RJ45 port)	
USB Host Ports	4 side USB 3.1 Gen1 ports, 2 front US	SB 3.1 Gen1 ports	
USB Device Port	1 USBTMC over USB 2.0 port		
GPIB Port (Optional)	Supports IEEE—488.2 (External)		
External Monitor Port	1 x DisplayPort, supports up to 4096 1 x HDMI, supports up to 4096x2304	x2304 @ 24 Hz 4 @ 60 Hz	
Remote Control	Microsoft COM Automation or LeCro	y Remote Command Set	
Network Communication Standard	VICP or VXI-11, LXI Compatible		
Power Requirements			
Voltage	100-240 VAC (±10%) at 50/60/400 F	Hz (±5%)	
Nominal Power Consumption	220 W / 220 VA		
Max Power Consumption	320 W / 320 VA		
Environmental			
Temperature (Operating)	+5 °C to +40 °C		
Temperature (Non-Operating)	-20 °C to +60 °C		
Humidity (Operating)	5% to 90% relative humidity (non-cor Upper limit derates to 50% relative h	ndensing) up to +31 °C umidity (non-condensing) at +40 °C	
Humidity (Non-Operating)	5% to 95% relative humidity (non-cor	ndensing) as tested per MIL-PRF-2880	0F
Altitude (Operating)	<u>Up to 10,000 ft (3048 m) at or below</u>	+30 °C	
Altitude (Non-Operating)	Up to 40,000 ft (12,192 m)		
Random Vibration (Operating)	0.31 grms 5 Hz to 500 Hz, 20 minute	es in each of three orthogonal axes	
Random Vibration (Non-Operating)	2.4 grms 5 Hz to 500 Hz, 15 minutes	in each of three orthogonal axes	
Functional Shock	30 g peak, half sine, 11 ms pulse, 3 shoo	cks (positive and negative) in each of three	e orthogonal axes, 18 shocks total
Size and Weight			
Dimensions (HWD)	13.8" H x 17.5" W x 6.7" D (352 mm x	. 445 mm x 170 mm)	
Weight	21 lbs (9.8 kg)		
Certifications			
UL and cUL Listing	CE compliant, UL and CUL listed; cor CAN/CSA C22.2 No. 61010-1-12	iforms to UL 61010-1 (3rd Edition), UL	61010-2-030 (1st Edition)
Warranty and Service			
	3-year warranty; calibration recomm upgrades, and calibration services.	ended annually. Optional service progr	ams include extended warranty,
WaveSource Arbitrary Waveform	Generator (all models)	Frequency Specification	
			5 MI 17

Max Frequency	25 MHZ
Sample Rate	125 MS/s
Arbitrary Waveform Length	16 kpts
Output Amplitude	4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp (50 Ω)
Waveform Types	Sine, Square, Pulse, Triangle, DC, Noise,
	Arbitrary Waveform

Sine	1 µHz - 25 MHz
Square/Pulse	1 µHz - 10 MHz
Triangular	1 µHz - 300 KHz
DC Output	±3 V (HiZ); ±1.5 V (50 Ω)
Noise	25 MHz (-3 dB)
Arbitrary Waveform	1 µHz - 3 MHz

ORDERING INFORMATION

Product Description	Product Code
350 MHz, 4 Ch, 12 Bits, 10 GS/s, 50 Mpts/Ch High Definition Oscilloscope	HD06034B
with 15.6" 1920x1080 capacitive touch screen and 4K extended desktop	
500 MHz, 4 Ch, 12 Bits, 10 GS/s, 50 Mpts/Ch High Definition Oscilloscope	HD06054B
with 15.6" 1920x1080 capacitive touch screen and 4K extended desktop	
1 GHz, 4 Ch, 12 Bits, 10 GS/s, 50 Mpts/Ch High Definition Oscilloscope	HDO6104B
with 15.6" 1920x1080 capacitive touch screen and 4K extended desktop	
HDO6000B-MS Mixed Signal Oscilloscopes	
500 MHz, 4 Ch, 12 Bits, 10 GS/s, 50 Mpts/Ch	HDO6054B-MS
with 15.6" 1920x1080 capacitive touch screen	
and 4K extended desktop	
1 GHz, 4 Ch, 12 Bits, 10 GS/s, 50 Mpts/Ch	HDO6104B-MS
High Definition Mixed Signal Oscilloscope	
and 4K extended desktop	
Included with Standard Configurations (HD06000B and HD06000B-MS)	
÷10 Passive Probe (Qty. 4), Getting Started Guide, Anti-v	virus Software
(Trial Version), Microsoft Windows® 10, Removable Sc	lid State Drive,
Destination Country, Protective Front Cover, 3-year War	ranty
Included with HDO6000B-MS	
16 Channel Digital Leadset, Extra Large Gripper Probe S Ground Extenders (Qty. 20), Flexible Ground Leads (Qty	Set (Qty. 22), . 5)
Memory Options	
100 Mpts/ch memory Option	
	HDOORD-AL
Additional Removable Solid State Drive	
WaveSource Arbitrary Function Generator	HD06KB-AFG
Serial Trigger and Decode Options	
100Base-T1 Trigger & Decode HD06	K-100Base-T1bus TD
100Base-T1 Trigger, Decode , HDO6K-1 Measure/Graph, and Eye Diagram	00Base-T1bus TDME
MIL-STD-1553 Trigger & Decode	HD06K-1553 TD
MIL-STD-1553 Trigger, Decode, Measure/Graph, and Eve Diagram	HDO6K-1553 TDME
ARINC 429 Bus Symbolic Decode, HDO6k-ARINC429	BUS DME SYMBOLIC
ABINC 429 Symbolic Decode HD06K-ABI	NC429bus DSymbolic
Audiobus Trigger and Decode	HD06K-Audiobus TD
Audiobus Trigger, Decode, And Graph	IDO6K-Audiobus TDG
CAN FD Trigger & Decode H	DO6K-CAN FDbus TD
CAN FD Trigger, Decode, Measure/Graph, HD06 and Eye Diagram	K-CAN FDBUS TDME
CAN FD Symbolic Trigger, HD06K-CAN FDB Decode, and Measure/Graph, and Eve Diagram	US TDME SYMBOLIC
CAN Trigger and Decode Option	HD06K-CANbus TD
CAN Trigger, Decode, Measure/Graph, HE	
and Eye Diagram CAN Symbolic Trigger. Decode. and HDO6K-CANB	DU6K-CANBUS IDME
Measure/Graph and Eve Diagram	US TDME SYMBOLIC
DiaRE 3G Decode	US TDME SYMBOLIC

Η	D
40	96

Product Description	Product Code	
Serial Trigger and Decode Options (co	nt'd)	
D-PHY Decode	HD06K-DPHYbus D	
I ² C, SPI and UART-RS232 Trigger & Decode	HD06K-EMB TD	
I ² C, SPI, UART-RS232 Trigger, Decode,	HDO6K-EMB TDME	
Measure/Graph, and Eye Diagram		
ENET Decode	HDO6K-ENETbus D	
FlexRay Trigger & Decode	HDO6K-FlexRaybus TD	
FlexRay Trigger, Decode, Measure/Graph	HD06K-FLEXRAYBUS TDMP	
and Physical Layer		
I ² C Bus Trigger & Decode	HD06K-I2Cbus TD	
I ² C Trigger, Decode, Measure/Graph,	HD06K-I2CBUS TDME	
and Eye Diagram		
I ³ C Bus Trigger & Decode	HD06K-I3Cbus TD	
I ³ C Trigger, Decode, Measure/Graph, _and Eye Diagram	HDO6K-I3Cbus TDME	
LIN Trigger & Decode	HD06K-LINbus TD	
LIN Trigger, Decode, Measure/Graph,	HD06K-LINBUS TDME	
and Eye Diagram		
Manchester Decode	HDO6K-Manchesterbus D	
MDIO Decode	HD06K-MDIObus D	
NRZ Decode	HD06K-NRZbus D	
PMBus Trigger & Decode	HD06K-PMBUS TD	
PMBus Trigger, Decode, Measure/Graph,	HD06K-PMBUS TDME	
and Eye Diagram		
SENT Trigger & Decode	HD06K-SENTbus TD	
SENT Trigger, Decode, Measure/Graph,	HD06K-SENTbus TDME	
and Eye Diagram		
SpaceWire Decode	HDO6K-SpaceWirebus D	
SPI Bus Trigger and Decode	HD06K-SPIbus TD	
SPI Trigger, Decode, Measure/Graph,	HD06K-SPIBUS TDME	
and Eye Diagram		
SMBus Trigger & Decode	HDU6K-SMBUS TD	
SMBus Trigger, Decode, Measure/Graph,	HD06K-SMBUS IDME	
And Eye Diagram		
UART and RS-232 Trigger & Decode		
UART-RS232 Trigger, Decode, Measure/Craph. and Eve Diagram	HDUOK-UART-RSZ3ZBUS IDIVIE	
	UDOEK LISP2 USIChus D	
USB 2 0 Trigger and Decode		
USB 2.0 Trigger Decede Measure/Creph		
and Eve Diagram	HDUUR-USB2BUS IDIVIE	
USB Power Delivery Trigger & Decode	HD06K-USBPD TD	
USB Power Delivery Trigger Decode	HD06K-USBPD TDMF	
Measure/Graph, and Eye Diagram		

Serial Data Compliance Test Options

QualiPHY 10Base-T1L Compliance Software	QPHY-10Base-T1L
QualiPHY 10Base-T1S Compliance Software	QPHY-10Base-T1S
QualiPHY 100Base-T1 Compliance Software	QPHY-100Base-T1
QualiPHY Ethernet 10/100/1000BT Software	QPHY-ENET
QualiPHY MOST50 ePHY Compliance Software	QPHY-MOST50
QualiPHY USB 2.0 Compliance Software for	QPHY-USB
Low Speed and Full Speed data rates	

Serial Data Analysis Options Serial Data Mask Option Power Analysis Options

rower Analysis Options	
Power Analyzer Software	HD06K-PWR
Digital Power Management Analysis So	ftware HD06k-DIG-PWR-MGMT
3-Phase Power Analysis Software	HD06K-THREEPHASEPOWER
3-Phase Power Harmonics Calculation	HD06K-THREEPHASEHARMONICS
Software (requires	
HD06K-THREEPHASEPOWER)	
3-Phase Power Vector Display	HD06K-THREEPHASEVECTOR
litter Analysis Ontions	

Jitter Analysis Options Clock and Clock-Data Timing Jitter Analysis Package

HD06K-SDM

ORDERING INFORMATION

Product Description	Product Code
Digital Filtering Options	
DFP2 Digital Filter Option	HD06K-DFP2
Other Software Options	
Spectrum Analysis Option (1 Trace)	HDO6K-SPECTRUM-1
Spectrum Analysis Option (2 Traces + Reference) HDO6	5K-SPECTRUM-PRO-2R
Advanced Customization Option	HD06K-XDEV
EMC Pulse Parameter Software Package	HD06K-EMC
Remote Control/Network Options	
External GPIB Accessory	USB2-GPIB
General Accessories	
Carrying Case	WPHD-CARRYCASE
HD06000B Rackmount Kit H	DO6KB-RACKMOUNT
Drahaa	
FOR MUE Deserve Ducks 2 From 1011 10 MO	DD000 1
500 MHz Passive Probe, 2.5mm, 10:1, 10 MΩ	PP023-1
500 MHZ Passive Probe, 5mm, 10.1, 10 MΩ	PPU20-1
Tal/Draha ta Dra Draha Adaptar	HVFU108
TekProbe to Probus Probe Adapter	DD4000
1 2v attenuation +201/ offect +200m//	RP4030
1.CHz 0.0 pE 1 MO High Impedance Active Probe	791000
1.5 CHz, 0.9 pl , 1 MQ High Impedance Active Probe	791500
30.450 MHz Current Probe – $AC/DC^{2}30.4$ 50.4	
30 A 10 MHz Current Probe - AC/DC, 30 A rms, 50 A peal	A Pulse CP030-3M
3 meter cable	
30A, 50 MHz High Sensitivity Current Probe - AC/DC, 30) A _{rms} , CP030A
50 Apeak Pulse, 1.5 meter cable	
30 A; 100 MHz Current Probe – AC/DC; 30 Arms; 50 Ape	_{eak} Pulse CP031
30A, 100 MHz High Sensitivity Current Probe - AC/DC, 3	30 Arms, CP031A

50 A_{peak} Pulse, 1.5 meter cable

Product Description	Product Code
Probes (cont'd)	
150 A; 10 MHz Current Probe – AC/DC; 150 A _{rms} ; 500 A _{pea}	k CP150
150 A, 5 MHz Current Probe - AC/DC, 150 A rms, 500 A Pea	ak CP150-6M
Pulse, o meter cable $500 \text{ A} : 2 \text{ MHz} \text{ Current Proba } = AC/DC : 500 \text{ A} : 700 \text{ A} = 100 \text{ A}$	Pulco CP500
Deskew Calibration Source	Puise CF300 DCS025
Programmable Current Sensor to ProBus Adapter	CA10
(for third-party current sensors)	UATU
500 MHz Active Differential Probe (\div 1 \div 10 \div 100)	ΔP033
500 MHz 60 V Common Mode Differential Probe	DI 05-HCM
1 GHz 60 V Common Mode Differential Probe	DI 10-HCM
200 MHz, 3.5 pF. 1 MΩ Active Differential Probe, ±20 V	ZD200
500 MHz, 1.0 pF Active Differential Probe, ±8 V	ZD500
1 GHz, 1.0 pF, 1 M Ω Active Differential Probe, ±8 V	ZD1000
1.5 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1500
1,500 V, 25 MHz High-Voltage Differential Probe	HVD3102A
1kV, 25 MHz High Voltage Differential Probe without	HVD3102A-NOACC
IP Accessories)	
1,500 V, 120 MHZ High Voltage Differential Probe	
tip Accessories	1VD3100A-NOACC
1kV, 80 MHz High Voltage Differential Probe with 6m cable	e HVD3106A-6M
2kV, 120 MHz High Voltage Differential Probe	HVD3206A
2kV, 80 MHz High Voltage Differential Probe with 6m cable	e HVD3206A-6M
6kV, 100 MHz High Voltage Differential Probe	HVD3605A
700 V, 25 MHz High Voltage Differential Probe	AP031
<u>(÷10, ÷100)</u>	
400 MHz, 1kV Vrms High-Voltage Passive Probe	HVP120
100:1 400 MHz 50 MΩ 4 kV High-voltage Probe	PPE4KV
1000:1 400 MHz 50 MΩ 5 kV High-voltage Probe	PPE5KV
1000:1 400 MHz 50 M Ω 6 kV High-voltage Probe	PPE6KV

Germany

Telemeter Electronic GmbH Joseph-Gänsler-Str. 10, 86609 Donauwoerth Phone +49 906 70693-0, Fax +49 906 70693-50 info@telemeter.de, www.telemeter.info

Switzerland

Telemeter Electronic GmbH Romanshornerstr. 117, 8280 Kreuzlingen Tel. +41 71 6992020, Fax +41 71 6992024 info@telemeter.ch, www.telemeter.info

Czech Republic

Telemeter Electrononic s.r České Vrbné 2364, 37011 České Budějovice Tel.+420 38 5310637, +420385510143 info@telemeter.cz, www.telemeter.cz